Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres
نویسندگان
چکیده
We here describe a new approach to visualise nitric oxide (NO) in living macrophages by fluorescent NO-sensitive microspheres based on poly(lactic-co-glycolic acid) (PLGA). PLGA microspheres loaded with NO550 dye were prepared through a modified solvent-evaporation method. Microparticles were characterized by a mean hydrodynamic diameter of 3000 nm, zeta potential of -26.000 ± 0.351 mV and a PDI of 0.828 ± 0.298. Under abiotic conditions, NO release was triggered through UV radiation (254 nm) of 10 mM sodium nitroprusside dehydrate (SNP). After incubation, AZO550 microspheres exhibited an about 8-fold increased emission at 550 nm compared to NO550 particles. For biotic NO release, RAW 264.7 murine macrophages were activated with lipopolysaccharide (LPS) of Salmonella typhimurium. After treatment with NO550 microparticles, only activated cells caused a green particle fluorescence and could be detected by laser scanning microscopy. NO release was confirmed indirectly with Griess reaction. Our functional NO550 particles enable a simple and early evaluation of inflammatory and immunological processes. Furthermore, our results on particle-based NO sensing and previous studies in targeting intestinal inflammation via (PLGA)-based microspheres demonstrate that an advanced concept for visualizing intestinal inflammation is tangible.
منابع مشابه
Loading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres
Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days. Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....
متن کاملPreparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method
Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...
متن کاملPreparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method
Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein parti...
متن کاملIL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1β-mediated degradation of nucleus pulposus in vitro
INTRODUCTION Inflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1β...
متن کاملCurcumin-loaded poly lactic-co-glycolic acid nanoparticles effects on mono-iodoacetate -induced osteoarthritis in rats
Curcumin has been found to be very efficacious against many different types of diseases. However, the major disadvantage associated with the use of curcumin is its low systemic bioavailability. In the present study the protective effects of curcumin-loaded poly lactic-co-glycolic acid nanoparticles (nanocurcumin) against mono-iodoacetate-induced osteoarthritis in rats was inves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017